Yahoo Answers จะปิดใช้งานในวันที่ 4 พฤษภาคม 2021 (เวลาตะวันออก) และตอนนี้เว็บไซต์ Yahoo Answers จะอยู่ในโหมดอ่านอย่างเดียว คุณสมบัติหรือบริการอื่นๆ ของ Yahoo หรือบัญชี Yahoo ของคุณจะไม่มีการเปลี่ยนแปลงใดๆ คุณสามารถค้นหาข้อมูลเพิ่มเติมเกี่ยวกับการปิดใช้งาน Yahoo Answers และวิธีการดาวน์โหลดข้อมูลของคุณในหน้าความช่วยเหลือนี้

CharroTh P ถามใน Science & MathematicsMathematics · 8 ปี ที่ผ่านมา

Logarithms math problem?

Find x so that (4^x-2)log(1-x^2)>0

Please show the work

Thanks

4 คำตอบ

ความเกี่ยวข้องกัน
  • Rogue
    Lv 7
    8 ปี ที่ผ่านมา
    คำตอบที่โปรดปราน

    (4^x-2)log(1-x^2)>0

    => (4^x)log(1-x^2) - 2log(1-x^2) > 0

    => (4^x)log(1-x^2) > 2log(1-x^2)

    => log((1-x^2)^(4^x)) > log((1 -x^2)^2)

    => (1-x^2)^(4^x) > (1 -x^2)^2

    => 4^x > 2

    => 2^(2x) > 2^1

    => 2x > 1

    => x > 1/2

    However as the original equation includes log(1-x^2) and there are no real soltions of logs of values <= 0

    so 1 - x^2 > 0

    => 1 > x^2

    => 1 > x > -1

    as x > 1/2

    => 1 > x > 1/2

  • 8 ปี ที่ผ่านมา

    Think of logarithms as exponents. That's effectively what they are, and how they act. So treat the values as such.

    You have an inequality, that, for simplicity's sake is

    y*log(z) > 0 (using y and z to represent more complicated expressions).

    This is saying, in effect, that log (z^y) > 0.

    The value of any other number raised to the zero power is 1.

    So the above expression really means;

    z^y >1

    Now treating this expression as an equality (so we can find the boundary case),

    we have z^y = 1

    Or (z^y)^-y = z = 1^-y (taking the yth root of each side).

    But that's just saying that z = 1, since the yth root of 1 is still 1.

    We could have saved ourselves some work - looking back at the original.

    If we treat the > as an equality sign to discover the boundary condition, we notice that we could divide both sides by (4^x-2). Dividing 0 by anything still leaves zero. So the first factor doesn't play a role, at least not yet.

    What we want is log(1-X^2) = 0 (again just mapping the inequality boundary)

    That's the same as saying (1-x^2) = 1

    Because again, a log is an exponent. So anything to the zero power =1

    1-x^2 = 1

    By inspection, x has to be zero to be true. that's the boundary. So when will the value of 1- x^2 be greater than 1? Never! (No real value of x will make 1-X^2 greater than 1. So the log will always be less that zero.

    Negative log does NOT mean a negative number on the real number scale. In fact, at least not until complex variables, the log function is undefined except for positive real numbers. A negative log means least than 1 (fractional values).

  • 8 ปี ที่ผ่านมา

    This requires EITHER both 4^x - 2 >0 and log(1-x^2)>0

    giving 2^(2x)>2 so 2x>1 so x>1/2 and 1-x^2>1 so x^2<0 which is

    not possible.

    OR 4^x - 2 <0 and log(1-x^2)<0

    so x < 1/2 and 1-x^2 < 1 so x^2>0 so all x╪0

    Complete set is x<1/2 except x=0

  • ?
    Lv 5
    8 ปี ที่ผ่านมา

    "It's LOG, it's LOG; it's big; it's heavy; it's wood..." See Ren and Stimpy if you don't understand...

    By the way, I can't tell due to your syntax if it's 4^x - 2 or 4^(x - 2); I'll do both...

    Remember that you cannot take the log of a negative number so in our example, -1 < x < 1 because otherwise (1 - x^2) < 0. Also, since x is within that boundary, log(1 - x^2) must be negative because log 1 = 0. For the left side to be positive, then, the first term must also be negative, so 4^x - 2 < 0 (under the first understanding), which means 4^x < 2 or 2^2x < 2^1, so 2x < 1 and x < 1/2. Properly written, it's -1 < x < 1/2.

    If it's 4^(x - 2) then it has no solution because no value of x will make that negative, and it needs to be to make the inequality true. Therefore, I'm assuming that the former syntax is the correct one.

    แหล่งข้อมูล: I'm a math teacher in California who's also quite the grammarian...
ยังคงมีคำถามอยู่ใช่หรือไม่ หาคำตอบของคุณได้ด้วยการเริ่มถามเลยในตอนนี้