Yahoo Answers จะปิดใช้งานในวันที่ 4 พฤษภาคม 2021 (เวลาตะวันออก) และตอนนี้เว็บไซต์ Yahoo Answers จะอยู่ในโหมดอ่านอย่างเดียว คุณสมบัติหรือบริการอื่นๆ ของ Yahoo หรือบัญชี Yahoo ของคุณจะไม่มีการเปลี่ยนแปลงใดๆ คุณสามารถค้นหาข้อมูลเพิ่มเติมเกี่ยวกับการปิดใช้งาน Yahoo Answers และวิธีการดาวน์โหลดข้อมูลของคุณในหน้าความช่วยเหลือนี้
3 คำตอบ
- 8 ปี ที่ผ่านมาคำตอบที่โปรดปราน
You should note that raising to an imaginary power is defined by
.. iΘ
e.....= cosΘ + i sin Θ
and
..a + iΘ.........a.....iΘ.........a
e.............= e....e.......= e (cosΘ + i sin Θ)
The famous special case is
..iπ
e.....= -1
so
......... i
(1 + i)
is analyzed by noting
1 + i
is a complex number with
....................._.....___
magnitude √2 =√1 +1
and direction 45° which is π/4
so it equals
√2 [ cos π/4 + i sin π/4 ]
Now we wish to raise this number to the i
power. i = i times 1
Let us convert EVERYTHING to powers of e
............(ln2)/2
√2 = e
.........................................I(π/4)
cos (π/4 )+i sin (π/4) = e
Now
.........i
(1 + i)
equals
.........................................i
[√2 [ cos π/4+ i sin π/4 ] ]
equals
......I..............................i
(√2) (cosπ/4+ i sinπ/4 ]
equals
..........i(ln2)/2......i²(π/4)
= e...................e
.....-π/4......iln2/2
= e...........e
Approximate value for
e^( -π/4) is 0.455938128
....i(½ln2)
e = cos (ln2/2) + I sin(ln2/2)
arguments of cos and sin are in radians
These calculate to
approximately
0.940542105 + 0.339677125 i
Multiply the above expression by
..-π/4
e which is approximately 0.455938128
and we obtain
= 0.428829006 + 0.154871752 i
matching the calculations of Wolfram Alpha and other utilities.
Additional Note:
This value is the principal value as it is the ONLY {or unique} value for
.......i
(1+i)
- husoskiLv 76 ปี ที่ผ่านมา
There s a shorter way to get the principal value here. z^w for complex numbers z,w is actually defined as exp[w log(z)]. The complex exp function is single-valued:
exp(u + iv) = (e^u)(cos v + i sin v)
....where e^u, cos v and sin v are the usual functions of real numbers.
The principal value for z^w is defined as that expression using the principal value for log(z). Namely:
log(z) = ln(|z|) + i Arg(z)
... where ln(|z|) is the natural logarithm of the real number |z|, and Arg(z) is the "argument" angle of z in polar form, in the interval (-π, π].
Knowing that, the answer can be found with:
Arg(1+i) = π/4
|1 + i| = √2
log(1+i) = ln(√2) + iπ/4 = (ln 2)/2 + iπ/4
(1 + i)^i = exp(i log(1 + i)) = exp( i*[(ln 2)/2 + iπ/4]
The rest is simplification.
= exp(-π/4 + i[ln 2]/2)
= e^(-π/4)*{cos [ln(2) / 2] + i sin [ln(2) / 2]}
On a calculator, you ll get the approximations given, but this is exact. Another form might be:
= [cos(ln(√2)) / e^(π/4)] + i [sin(ln(√2)) / e^(π/4)]
...to save keystrokes on a calculator with a square root button.
- Wonder WhoLv 68 ปี ที่ผ่านมา
0.428829006294368+0.154871752464247i
..although I don't know how it was calculated