Yahoo Answers จะปิดใช้งานในวันที่ 4 พฤษภาคม 2021 (เวลาตะวันออก) และตอนนี้เว็บไซต์ Yahoo Answers จะอยู่ในโหมดอ่านอย่างเดียว คุณสมบัติหรือบริการอื่นๆ ของ Yahoo หรือบัญชี Yahoo ของคุณจะไม่มีการเปลี่ยนแปลงใดๆ คุณสามารถค้นหาข้อมูลเพิ่มเติมเกี่ยวกับการปิดใช้งาน Yahoo Answers และวิธีการดาวน์โหลดข้อมูลของคุณในหน้าความช่วยเหลือนี้
Kind of hard physics question? help please?
An electron with kinetic energy K is traveling along the +x axis, which is along the axis of cathode-ray tube as shown in the picture. There is an electric field E= 12.00 x10^4. N/C. pointed in the +y direction between the deflection plates, which are 0.0600 m long and separated by 0.0200m.
Determine the minimum initial kinetic energy the electron can have and still avoid colliding with one of the plates..
how the heck do i do this....
2 คำตอบ
- ArgentLv 77 ปี ที่ผ่านมา
Start by finding the force on the electron:
F = Eq, where q is the electron charge:
F = (12.00 × 10⁴ N/C)(1.602 × 10ˉ¹⁹ C) = 1.922 × 10ˉ¹⁴ N.
F = ma, so a = F/m, where m is the electron mass:
a = (1.922 × 10ˉ¹⁴ N) / (9.109 × 10ˉ³¹ kg) = 2.110 × 10¹⁶ m/s².
x = x₀ + v₀t + ½at².
Here, x = the length of the journey from the centerline to one plate = 0.0100 m;
x₀ = 0 m;
v₀ = unknown, but it is the speed needed to travel the length of the plates (0.0600 m) in the time required to accelerate to one of the plates;
a = 2.110 × 10¹⁶ m/s².
In general, x = vt, so t = x/v, so we can get t = (0.0600 m) / v₀.
Rewrite the displacement equation above:
½at² + v₀t + x₀ = x.
Substitute (0.0600 m / v₀) for t, and put in the other values:
½(2.110 × 10¹⁶ m/s²)(0.0600 m / v₀)² + v₀(0.0600 m / v₀) + 0 m = 0.0100 m.
Simplify this to
½(2.110 × 10¹⁶ m/s²)(0.0600 m / v₀)² + 0.0600 m = 0.0100 m,
and then to
½(2.110 × 10¹⁶ m/s²)(0.0600 m / v₀)² = -0.0500 m.
Multiply by 2 for a bit more simplicity, giving
(2.110 × 10¹⁶ m/s²)(0.0600 m / v₀)² = -0.100 m.
Rewrite this as
(2.110 × 10¹⁶ m/s²)(0.00360 m² / v₀²) = -0.100 m.
Solving for v₀² gives
v₀² = (2.110 × 10¹⁶ m/s²)(0.0036 m²) / (-0.100 m)
= -7.596 × 10¹⁴ m²/s².
(I think we can safely assign a positive sign here; the choice of coordinate directions doesn't matter much. So. v₀² = +7.596 × 10¹⁴ m²/s².)
Now we can use this in the kinetic-energy equation.
K = ½mv₀²
= ½(9.109 × 10ˉ³¹ kg)(7.596 × 10¹⁴ m²/s²)
= 3.459 × 10ˉ¹⁶ J.