Yahoo Answers จะปิดใช้งานในวันที่ 4 พฤษภาคม 2021 (เวลาตะวันออก) และตอนนี้เว็บไซต์ Yahoo Answers จะอยู่ในโหมดอ่านอย่างเดียว คุณสมบัติหรือบริการอื่นๆ ของ Yahoo หรือบัญชี Yahoo ของคุณจะไม่มีการเปลี่ยนแปลงใดๆ คุณสามารถค้นหาข้อมูลเพิ่มเติมเกี่ยวกับการปิดใช้งาน Yahoo Answers และวิธีการดาวน์โหลดข้อมูลของคุณในหน้าความช่วยเหลือนี้

Pinkgreen ถามใน Science & MathematicsMathematics · 3 ปี ที่ผ่านมา

Again, please help. Find all possible x such that x^4+2x^3+8x+9=0(mod 35).?

4 คำตอบ

ความเกี่ยวข้องกัน
  • kb
    Lv 7
    3 ปี ที่ผ่านมา
    คำตอบที่โปรดปราน

    Since 5 * 7 = 35 and gcd(5, 7) = 1, it suffices to solve

    x^4 + 2x^3 + 8x + 9 = 0 (mod 5) and x^4 + 2x^3 + 8x + 9 = 0 (mod 7).

    ----

    (i) x^4 + 2x^3 + 8x + 9 = 0 (mod 5)

    Note that x = 0 (mod 5) is not a solution; hence we can say that x^4 = 1 (mod 5) by Fermat's Little Theorem.

    ==> 1 + 2x^3 + 8x + 9 = 0 (mod 5)

    ==> 2x^3 + 8x = 0 (mod 5), since 10 = 0 (mod 5)

    ==> 2x(x^2 + 4) = 0 (mod 5)

    ==> x^2 + 4 = 0 (mod 5), since we ruled out x = 0 (mod 5) as a solution

    ==> x^2 - 1 = 0 (mod 5), since 4 = -1 (mod 5)

    ==> (x + 1)(x - 1) = 0 (mod 5)

    ==> x = -1, 1 (mod 5), since 5 is prime.

    ----

    (ii) x^4 + 2x^3 + 8x + 9 = 0 (mod 7)

    ==> x^4 + 2x^3 + x + 2 = 0 (mod 7), reducing the coefficients mod 7

    ==> x^3 (x + 2) + 1(x + 2) = 0 (mod 7)

    ==> (x^3 + 1)(x + 2) = 0 (mod 7)

    ==> (x^3 + 8)(x + 2) = 0 (mod 7)

    ==> (x + 2)(x^2 - 2x + 4) * (x + 2) = 0 (mod 7), via sum of cubes

    ==> (x + 2)^2 (x^2 - 2x - 3) = 0 (mod 7)

    ==> (x + 2)^2 * (x - 3)(x + 1) = 0 (mod 7)

    ==> x = -2, 3, or -1 (mod 7), since 7 is prime.

    ----

    In summary, we have that

    x = -1, 1 (mod 5) and x = -2, 3, or -1 (mod 7).

    <==> x = 1 or 4 (mod 5) and x = 3, 5, or 6 (mod 7).

    By the Chinese Remainder Theorem (or otherwise), we find that we have two solutions modulo 35:

    (1) x = 1 (mod 5) and x = 3 (mod 7) ==> x = 31 (mod 35)

    (2) x = 1 (mod 5) and x = 5 (mod 7) ==> x = 26 (mod 35)

    (3) x = 1 (mod 5) and x = 6 (mod 7) ==> x = 6 (mod 35)

    (4) x = 4 (mod 5) and x = 3 (mod 7) ==> x = 24 (mod 35)

    (5) x = 4 (mod 5) and x = 5 (mod 7) ==> x = 19 (mod 35)

    (6) x = 4 (mod 5) and x = 6 (mod 7) ==> x = 34 (mod 35)

    That is, x = 6, 19, 24, 26, 31, or 34 (mod 35).

    (Double checked on Wolfram Alpha.)

    -------

    I hope this helps!

  • 3 ปี ที่ผ่านมา

    I had tried the problem later and luckily success:

    35 could be splited into 7 *5=>there were 2 equations:

    x^4+2x^3+8x+9=0(mod 7)-------(1)

    and

    x^4+2x^3+8x+9=0(mod 5)-------(2)

    From (1), by trial and error, got

    x=3,5,6 (mod 7)--------(3)

    From (2), got

    x=1,4 (mod 5)---------(4)

    In order to find all x satisfying both (3) & (4),

    I considered these combinations:

    x=3 (mod 7) & x=1 (mod 5)------(5)

    x=3 (mod 7) & x=4 (mod 5)------(6)

    x=5 (mod 7) & x=1 (mod 5)------(7)

    x=5 (mod 7) & x=4 (mod 5)------(8)

    x=6 (mod 7) & x=1 (mod 5)------(9)

    x=6 (mod 7) & x=4 (mod 5)------(10)

    For (5)

    5x=15 (mod 35)

    7x=7 (mod 35)

    =>

    2x=-8(mod 35)

    =>

    x=-4(mod 35)

    =>

    x=31 (mod 35)

    Following the similar methods, I finally got

    x=6, 19, 24, 26, 31, 34 (mod 35) or

    x=6+35k

    x=19+35k

    x=24+35k

    x=26+35k

    x=31+35k

    x=34+35k

    where k is an integer.

    Thank you all to provide other

    good ways for the solution.

  • Ian H
    Lv 7
    3 ปี ที่ผ่านมา

    Let T = x^4 + 2x^3 + 8x + 9 and using calculator for trial substitutions

    x = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} found first few integer values as

    T/7 = {f, f, 24, f, 132, 255, f, f, f, 1727, f} (f rejected fraction values)

    T/5 = {4, f, f, 85, f, 357, f, f, 1620, f, 3480}

    255 *7 = 357*5 = 1785 when x = 6

    So, x = 6 gave x^4 + 2x^3 + 8x + 9 = 51*35 = 0 (mod 35)

    T/5 values correspond to x = 5a + 1 or (5a + 1) + 3 so for x < 35 these are:-

    1, 6, 11, 16, 21, 26, 31, and

    4, 9, 14, 19, 24, 29, 34

    Extending the list for T/7 you can eventually convince yourself that

    T/7 values correspond to x = 5b + 3 or (5b + 3) + 2 or (5b + 3) + 3, namely,

    3, 10, 17, 24, 31, and

    5, 12, 19, 26, 33, and

    6, 13, 20, 27, 34,

    The only values in both lists are x = 6, 19, 24, 26, 31, or 34

    This is not a recommended method as the three forms for T/7 not obvious.

    Use the brilliant method breaking down the polynomial asposted here by KB

  • 3 ปี ที่ผ่านมา

    Check values of x from 0 to 34 using a spreadsheet, substituting into the polynomial to look for zeros mod 35.

    Results are

    x=k=6, 19, 24, 26, 31, 34.

    Solutions are x=35n+k where k is as above and n is any integer (n in Z).

    Checked using Wolfram Alpha.

    แหล่งข้อมูล: Puzzling's solution to https://answers.yahoo.com/question/index;_ylc=X3oD...
ยังคงมีคำถามอยู่ใช่หรือไม่ หาคำตอบของคุณได้ด้วยการเริ่มถามเลยในตอนนี้